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Solutions of mixed dynamic problems are constructed in the case of a piecewise-homogeneous plane coinciding with the plane 
of symmetry of the elastic properties of the medium, that is, the most common case of anisotropy when the plane and the antiplane 
problems separate. Conditions for the stress and displacements vectors are specified in three combinations and of certain equivalent 
versions on the straight interface between the two materials. For example, the tractions on the open intervals are given, at the 
slippage, the shear resistance and the discontinuity in the normal displacement are specified and, in domains of cohesion, the 
discontinuities in the stresses and displacements are specified. By introducing new complex potentials, the common representations 
of solutions in steady-state dynamics [1, 2] can be successfully transformed to a type of boundary-value problems which has 
previously been studied [3-5]. The following problems are investigated as examples: the problem of a notch with an unknown 
section of contact of the edges due to an external stress field, and the problem of the motion of a semi-infinite cut under the 
action of forces applied to the cut surfaces, with alternative conditions of their contact (opening or slipping). © 2001 Elsevier 
Science Ltd. All rights reserved. 

Problems in the steady-state dynamics of an isotropic, elastic half-plane and the statics of an anisotropic 
elastic half-plane with two types of boundary conditions were investigated for the first time by Galin 
[6] and Savin [7]. The first solution was constructed [8] for a combined plane consisting of two different 
isotropic materials with three types of contact conditions but with a single slip interval. Subsequently, 
a general solution of the Riemann-Hilbert vector problem was given [3] which can be factorized by 
methods of analytic continuation and conformal mapping of a domain. Similar problems with many 
types and combinations of conditions in a number of sections have subsequently been studied in the 
case of a half-plane or an orthotropic plane with narrow notches [5]. It has been shown that these 
problems reduce to a new combined boundary-value problem in the theory of functions of a complex 
variable, with conditions of the Riemann and Dirichlet type in different intervals, which admits of a 
general solution in terms of Cauchy integrals [4]. 

In this paper, we give an explicit definition of this solution with simplifications applying to the aims 
of the investigation and, also, a derivation of the formulae for the boundary values of the required 
quantities and the asymptotic forms at the nodal points. 

Three types of conditions are also considered in the treatment of the static problem of a crack at the 
interface of a combined anisotropic plane using the method of boundary integral equations [9]. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We will consider the plane problem of the interaction of two anisotropic, linearly elastic half-planes 
made of different materials. In the systems of intervals S = O Sk, Sk  = [sk, tk], k = 1 . . . .  , K ,  s 1 < t I < 
• . .  < t r ,  t h e  half-planes are bonded together and, here, the discontinuities in the stress and displacement 
vectors are specified while, in the sections under the slip condition L = O L j ,  L j  = (aj, by), j = 1 . . . .  , J,  
the shear stresses and the discontinuities in the normal displacements and stresses are specified. In the 
remaining intervals, T = U Tin, m = 1 . . . .  , M ,  the surfaces are open and the tractions on them are 
given; x, y is a rectangular system of coordinates moving at a constant, sub-Rayleigh velocity, Co, and 
materials I and 2 occupy the half-planes y > 0 and y < 0. 

The formalism in [1, 2] is based on the following notation for the Navier equations in the case of the 
steady-state spatial dynamics of an arbitrary anisotropic body 

C~,tu,.it =0, C~u,t = C o . , t - p c 2 $ j , S , i S , t ,  i , j , k , l =  !,2,3 (1.1) 
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where {Cij~} is the stiffness tensor, u = (ul, u2, u3) is the displacement vector, p is the density a n d  ~jk 
is the Kronecker delta. The effective tensor {C~kt} loses some of the symmetry properties and remains 
invariant only with respect to change of subscripts C~/jkl = CTkji. It is well known [1, 2] that the general 
solution of Eqs (1.1), which only depends on two variables, can be expressed in terms of three 
holomorphic functions %(Zk), Zk = x + PkY 

t = (~yx,C~yy,C~y3) = 2~{G~}, U,x = 2~{A~}, ~ = {¢#,(zk)} (1.2) 

S = ((~xx,(~xy,l~x3) ----- 2~{pc2A~-GF(b} 

where t and s arc stress vectors, and the matrices A, G and F depend on the solution of the eigenvalue 
problem 

3 o 2 o (1.3) 
~, { CUk I + Pq (CI'u*2 + C22#1 ) + Pq C2jl~2 }Akq = 0 
q=l 

detlC~l#, + pq( C[i jk 2 + C~ /,, )+ p2q C~ j,2 } = 0 

The normalization of each column of matrix A is arbitrary. When Co < CR, where cR is the smaller of 
the velocities of the Rayleigh waves in the direction of the x axis, all the eigenvalues, generally speaking, 
are complex and, among the three pairs of conjugate roots of the second equation of (1.3), the three 
roots with the positive imaginary partpk (k = 1, 2, 3) are selected. The coefficients of the matrix G are 
then determined using the formulae (for the definition of F, see [2]) 

3 3 o 
Gjq = ~, {C~jkl + pqC~jk2}Akq = -- ~, {pqIC~jk! + CIjk2}Attq (1.4) 

k=l k=l 

If x, y is the plane of symmetry of the elastic properties, then C~kt = 0 for the sets of subscripts 
containing an odd number of numerals 3. The equation for u 3 in (1.1), and this means also the equation 
for the antiplane problem, are separated from the equations for ul, u2 - u, v (the plane problem) and 
the determinant in (1.3) is decomposed into two cofactors such that the rootp3 and the sole component 
A33 of the corresponding eigenvector are calculated independently. 

We will henceforth confine ourselves to the treatment of the plane problem and seek the vectors 
t = (O~y, oyy) = (x, o), U = (ux, Vx) = (U, V) ,  starting from the representations in terms of the complex 
potentials, by putting i,j, k, 1, ' / /-  1, 2 in (1.2)-(1.4). The unusual cases of multiple and real rootspl, p2, 
which require a different approach, are not considered. Then, the solutions which are constructed below 
do not degenerate when Co ~ O, as in the case of isotropy, and include the correspondent static problems. 

The boundary conditions of the main problem 

t ± =t~(x)  (T), "c ± =x~(x),  [V]= V.(x) (L) (1.5) 

[ t l=t , (x) ,  [U]=U,(x)(S) ,  t~ t** ,  x2+y2--> 00 

where the plus and minus superscripts denote contraction from above and below onto the axis y = 0 
and the right-hand sides satisfy the Holder conditions, are then split into parts which are symmetric 
and antisymmetric with respect to the stresses, using the notation 

f+ = ( f )  _ / {f+ (x, 0) + f -  (x, 0) }, + 2 f  2 = [fl  - f+ (x, 0) - f -  (x, 0) 

Correspondingly, we construct the fields ts, Us and tas, Uas, the sum of which is the solution of the initial 
problem (1.5). In the case of a problem with asymmetric stresses and null conditions for [Uas] at the 
interface with the condition that the solution vanishes at infinity, it follows from (1.2) that there is a 
separate Dirichlet problem for the upper and lower half-planes, the solution of which is given by integrals 
of the Cauchy type [10]. The right-hand sides of the boundary conditions in the case of a problem with 
symmetric conditions for the stresses (the subscript s is henceforth omitted) then become known 

t +=(t0)(T),  [t]=0, [UI=U,  (S) 

z ± = (x0), [cy] = 0, [V] = V. (L) (1.6) 
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For closure, it is necessary to supplement this problem with a set of specified discontinuities [u] at 
each joint of the intervals S and T and of the discontinuities [v] at the remaining nodal points. 

We now introduce the vector functions h = (hi, h2) and X(z) = (~1, X2)(z = x +/y) and also the matrices 
B and H using the formulae 

h=2G~, ~l =ihl, ~2 =h2+~oht 

B=iAG-t ,  H = B t  +B2 ={Htq}, Hji =-Hj >0 (1.7) 

Hi2 = -H2t =- f-l + ift, d e t n > 0 ,  ~Jo = f t  l H 2 

Here and henceforth, for brevity the notation g = ~ + i~ is introduced for any complex quantity. 
The matrix H, which is defined above in terms of the matrices B, referring to materials 1 and 2, 
is Hermitian and positive definite. We also note that Hi, H2,/ : /are invariant under a permutation 
of the positions of materials 1 and 2 while/~ changes sign. Below, without loss of generality, we put 
H > 0 .  

The analytical continuation h = ~ -  h follows from the symmetry of the boundary conditions in 
the stresses (1.6) and (1.2), (1.7). The stresses and the discontinuities in the derivatives of the 
displacements on the boundary can be expressed in terms of the boundary values of the function h and, 
then, using formulae (1.7) and relations (1.8) presented below, the potentials Zk can be expressed as 
follows: 

t = ~ l h + } ,  [U] = 9" lHh +} (1.8) 

^+ X ~+ X = o(x)=~2(  )-130~1(), x(x) ~ ( x )  (1.9) 

[V(x)] = H 2 { [ ~ ( x )  + ~ ( x ) } ,  [U(x)] = / ~ { ~ ( x )  + ~ ( x ) }  + ~0[V(x)] 

/~2 _ Hi H2 ; =  , 

H2 ' /~H2 

We now use the fact that the boundary conditions when y = ___0 in the planes z and Zk are written 
identically. Actually, the problem will be considered in the z plane and the functions Zi(z) will be found. 
The functions hi(z) are then found from (1.7) and the initial potentials $(z) = G -lh(z) are recovered. 
Finally, the variable z is replaced byZk and the field outside the boundary can be calculated using formulae 
(1.2). 

The generalized Riemann-Hilbert boundary-value problem follows from relations (1.6)-(1.9): it is 
required to find the vector X(z), which is holomorphic in the upper half plane z using the following 
conditions on the real axis 

~- { Dx+(x) } = fix), --~ < x < +~ 

f,  = A = (Oo) + 13d, 

f4  = H21V* , f5 = f t - ' {U ,  -~oV,}  

(1.10) 

and satisfies the constraints on its behaviour at the nodal points and at infinity, which are usual in the 
theory of elasticity. Unlike the case of the similar scalar problem, no general method is known for solving 
the generalized coupled Riemann-Hilbert vector problem with three or more types of boundary 
conditions. It is important, however, that the initial problem can be reduced to problem (1.10), which 
belongs to a special class of such problems: the upper rows of the piecewise-constant matrix D are real 
numbers and the lower rows are imaginary numbers. This is achieved by introducing the new potentials 
Zk (the functions hk and the matrices B and H were introduced earlier [1, 2]). Factorization of the vector 
problem then becomes possible [3, 4]. 



342 I.V. Simonov 

The solution of problem (1.10) in Section 4 will be constructed for the case of a finite length of all 
the intervals from L and S. Other cases, including discontinuities of the boundary conditions at infinity, 
can be treated using a corresponding passage to the limit or an elementary conformal mapping of the 
plane, converting an infinite point into a finite point. We also note that the specification of the far stress 
field is not always arbitrary and must be matched with the boundary conditions. 

By substitution x ~ o, U ~-~ V(the subscripts on H,,  hk, Zk change places) and, also, using the duality 
<---> U, o ~-~ V and, then, the substiution x <--) o, U <---) V and inversion of the matrix B, it is possible to 

obtain formulations of the new boundary conditions which are equivalent to (1.10). We shall initially 
consider the case when the solution is constructed by the method of conformal mapping, which is simpler 
and more readily understandable. 

2. O N E  SLIP  S E C T I O N  

suppose there is a slip section [-1, 1]. First we shall remove the inhomogeneity in the boundary condition 
by considering the difference 

I I f(t)dt 
x = x - x  °, 

- I  t - - Z  

Boundary-value problem (1.10) with the modified right-hand sides ( f -~  f0) 

f o = ( f ~ , f 2 - x ~ )  (T), f o = 0  (L), f o = ( f 4 , f s - ~ X ~ - Z ~ )  (S) (2.1) 

is obtained for the vector function X(z). A method of solving this problem was proposed earlier [3]. 
Briefly, it is as follows. We continue the function X(z) analytically across the interval [-1, 1]: 
X(z) = X---'~. The Zhukovskii conformal mapping: z = (tO + tO-l)/2 (tO = ~ + irl -- z + ~ - ~ )  converts 
the z plane with the cuts Ix I > 1, y = _ 0  into the upper half-plane tO, and the interval [-1, 1] into an 

. . . . . .  ÷ + • + I  • ÷ 1  upper senuclrcle of umt radms with correspondence of the points x = s~, t~ ¢~ ~ = (Sk)- ,  (tk)- • In the 
case of a vector ¢~ = DIX, where X(tO) = ~ i 7 ~ ,  "q I> 0 and ¢~(tO) = ~-(i7~, which is piecewise-holomorphic 
in the tO plane, we obtain the matching problem in which the coupling matrix on the boundary is equal 

• • " O • • 1 - - 1  to the identity matrix in the sections from T and ~s equal to a certain matrix D on Sto = (Sk, tk) U (Sk , 
t~-l). By diagonalizing the matrix D °, the problem reduces to determining just one scalar function W(tO) 
using the matching boundary conditions, the solution of which is constructed in the standard way [11] 
and is presented below 

II tl X =  × W - × W '  W = F I { R + I } ,  FI=FItl-I 2 

r o- ( t K ' • K 
FIj=I-I  sk , 2r+lII2 = (z2-1)l-I (Z-Sk)(Z-tk) 

, L(s;to- i ) ( to-  t;,)_l 

r+l I +** W°(t)dt 
R= ~, rktO k, r k = - F  k, 1=-~ fl~ l_i+(l)(t_tO ) 

- K - I  

(2.2) 

× = ~ - ~ ,  W ° = T ? ' B 0 g = ( W  °, W:) (So,), W°=X(~g  (To,) 

B 0=D,D~ I, g=fo[x(~) l=(gl ,g2) ,  I~1>1 

]l x ) ×  InlXl a-I 
T,=  , or= -2--~- , k=d+------~<0, d = ~ ,  

g,,,(,~) = ( - ] ) 'g , , , ( l l~) ,  I,~I < l 

IZ.I> I 

where d, an analogue of Dundurs' parameter, determines the degree of difference in the elastic properties 
of materials i and 2, and, in order for the integral to exist, a constraint is required on the nature of the 
decay of the specified functions as x ~ __. co. We construct the cuts for isolating the single-value branch 
of the function Ill(tO ) along Sco and the condition 1Y = 1 fixes the set of branches of its cofactors. The 
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free 2K + 3 real constants in solution (2.2) are determined from the two conditions for matching the 
stresses at infinity with the specified remote field to. and the 2K + 1 conditions for the single-valuedness 
of the displacements on going around the open and closed intervals [10], taking account of the 
discontinuities in the displacements specified at the nodal points. 

If  the two po in t sx=  ___ 1 are boundary points for the intervals L and S, then the corresponding factors 
(z - st) and (z - tm), st = -1,  tm = 1 have to be removed from the product H2(z). When the slip zone L 
is also contiguous with a cohesive part from S and with an open zone from T, then, apart from 
the removal of the corresponding factor as in the preceding case, the factor ~ -  ~ is added to 
the function 1-12(z ), which compensates for the irregular behaviour of  the solution at infinity. The 
polynominal (either the upper or the lower signs are chosen) 

K 
R =  ~, rkto k, rk_;=+'i_ k, k = O  .. . . .  K+I ,  x = + l ~ L / S ,  x = T - i ~ T / L  

- K - I  

is also subject to a change and the number of free constants is equal to 2K + 2 if the boundary conditions 
do not lose the discontinuity at infinity and are identical with the number of  additional conditions of 
the problem. 

Close to the nodal points z = -1 ,  we have an ordinary root singularity of the solution: at the boundary 
points of S/L (the interval from S is located to the left and the interval from L to the right) and L/S, 
the oscillating singularity automatically vanishes since the same cofactors are cancelled in the case of 
the function Ill(tO). This singularity also disappears at points of the type of T/S on the surface 
d = 0 ¢=~ I ~ [ = 1, tx = 0 in the phase space of the elasticity constants. 

3. A N A R R O W  N O T C H  AT T H E  I N T E R F A C E  

We will now consider an example of a static problem with a single frictionless slip zone [-1,  1], which 
is f o r m e d  by the  c losure  o f  the  s ides  o f  the n o t c h  (a, b),  a < -1 ,  b > 1 u n d e r  the act ion  o f  a r e m o t e  
field x . ,  a .  < 0. Initially, it had a constant opening 60 which it subsequently only retains at its ends. 
Solution (2.2) takes the form 

(A - to)(1 - Bto) ii E = ! (3.1) 
H I = ~0 let, ~0 = ( A ~  - I)(to - B ) '  4~/(z 2 - I)(a - z ) ( z  - b )  

R = r¢o 2 - ~2to -2 + r¢o - ~to-~ + ir o, I = 0 

~0=0, A = a + ~ a 2 - 1 ,  B = b - ~ / - - ~ - I  

From the conditions at infinity, which include the fact that the coefficient of z -1 in the expansion of 
W(z) when z --> oo is equal to zero, we extract the complex coefficients rl and r2: 

= ~** + [$0~. + i×x** ~ A[} 
r2 i×(I ~. I ~ + I ~. 1-½) ex ict in (3.2) 

r, = r2 I2ia(  + I )  - a - b} 

The conditions that the displacements should be single-valued on passing around the whole of the 
contour of the notch will be satisfied if the term O(z- ' )  is missing in the expansion of  the potentials 
[10] and the condition for the discontinuity in the normal displacements to grow by an amount $0 in 
the interval (1, a) remains for calculating the coefficient r0 

i [V]dx = 60, [V(x)] = 2×H21~+(x) (3.3) 
I 

r o = {(×H2)-180 - I z}12 J, 14 = 2 i l -I~(x)Vk(x)dx 
I 

~; = ff{l-l~(x)(R[~(x)]- ir o)exp(it~ In I tp(x) I)}, ¥2 = cos(or In I tp(x)l) 
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In the calculations, it is useful to take account of  the smallness of the constant t~ in statics and low- 
speed dynamics and to neglect terms of the order of tx 2 compared with unity in (3.1)-(3.3). However, 
as the velocity Co approaches cR, the magnitude of  t~ increases to infinity [1, 2]. 

We determine the unknowns a and b from the condition for there to be no singularity at the boundary 
points of incomplete contact of the smooth surfaces z -- _1:2F2 --- 2~1 + r0 = 0. In the physical plane 
where the ends of the notch a ° and b ° are specified numbers and x],2 are the required boundaries of 
the domain of contact of  the notch surfaces, we proceed with the transformation 

z* (a* - b ° ) z + a b  * - a * b  x* a b ° - a * b + ( a ° - b ° )  
= , X = +1  ¢::~ 1,2 = 

a - b  a - b  

A solution obviously exists if the numbers x],2, obtained satisfy the inequalities a* < x] ~< x~ < b °. 
The beginning of the closing x] = x~ determines the limiting surface a*** = t ~  (x= . . . .  ) in the parameter 
space. 

In the case of symmetry (x** = O, a = --b) 

r2 =i~ 2 = -i~** J Xl ~ f i = ~ = . . 4 ( x 4 a 2 _ l ? 2 ,  I ( 8 o / ~ x(I-~)' r ° = ~ -  2 -  I)  

I I = 2~ z {aE(41 - a -2) - 12 }, ! 2 = (2a) -j K(41 - a -2 ) 

where K and E are complete elliptic integrals of the first and second kind. 
We use the equation for determining the point of separation 2F1 + r0 = 0 to solve the inverse problem 

of determining the magnitude of  the stress a** as a function of the length of the overlap of the 
notch 2/. 

- a .  6°(IXl5 +IXl-5) ' t2/~---12 
= 2H21o(1) , !o = S, 3 l ' l_ - -~  dt (3.4) 

where, for convenience, the half-length of the notch has been taken as the unit of  length 
(renormalization), the opening 80 has already been divided by this half-length, and the accuracy of the 
formula is O(42). When l -~ 0, the limit 10 ~ 1 exists and it is then simple to find the limit stress a~ 
from (3.4). It is identical with the value which can be extracted from the solution of  the corresponding 
problem of a notch where its sides do not come into contact. On the other hand, if l ---> 1, then 
l0 - 1/2•(1 - l )  and a~ - (1 - l ) - I  __~ oo. 

4. T H E  G E N E R A L  CASE 

Suppose the number of intervals Lj is arbitrary, J > 1. From these intervals, we separate the semi-open 
parts (having just a singlepoint in common with T) (an, bn) E L" C L (n = 1 . . . . .  J'), the closed parts 

I g  • / p  M • H (with two such points) [at, bt ] ~ L C L (l = 1 . . . .  , J ) and the open parts J - J - ~ .  Following the 
procedure described in [4], we express the solution of the vector problem (1.10) in terms of the single 
scalar function F(z)  

~ j ( Z )  = X j - I  I F ( z )  - ( - I )  1 F ( Z ) } ,  j --- 1 , 2  (4.1) 

Substituting expressions (4.1) into conditions (1.10) we obtain a combined boundary-value problem for 
determining the piecewise-holomorphic function using the conditions for a Dirichlet problem in L and 
the conditions for a Riemann problem in R = T U S 

b ' ± ( x ) = f ± ( x ) ,  2 f ± = × - J f 3 + ~  (L) (4.2) 

F+(x) = F-(x) + fr(x),  f r  = ×-1/2 + ift (T) (4.3) 

df s + iA 
F + ( x ) = X F - ( x ) +  f s (x ) ,  f s  = ~ + ×  (S) (4.4) 

Unlike the conventional boundary-value coupling problem, the general solution of the combined 
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homogeneous problem corresponding to (4.2)-(4.4) is found using the two canonical solutions since, 
in this case, it is impossible to select the single canonical solution with the largest permissible singularities 
at all of the nodal points and, consequently, having the greatest order at infinity [4, 10]. These solutions 
are sought in the form of the product of the canonical solution of the Riemann problem (4.3), (4.4), 
Z(z), the auxiliary functions I-ll(z) and l-h(z), which ensure that the necessary conditions and the proper 
order at the nodal points are satisfied, and, finally, the canonical solution of the Dirichlet problem (4.2) 

"l'l" "n "-'e i¥(z) F~(z)=Z(z) i{,z) ,tz) , Z = Z o H  0 (4.5) 

( I K Z - -  s k 
z o = n  - -  , 

r ( ~ J - t  ! 
" z -  s k ' - ~  t i t  = I-1 rio = II  tk )l//~ , k=J ( z -  j=t z - c j  

~/± = rlj ± - x m ~  -arg{ZI-lll-l.} ± (L) (4.6) 

Here, the integers m~ are as yet arbitrary. We order the auxiliary complex constants cj in the lower 
semicircles with the ends aj, bj and the function H.(z) is specifically defined below. Cuts are constructed 
along the x axis joining the points a and ~ for selecting branches of the power functions of  the form 

13 ÷ + (z - a) ; arg (x - a ) -  = 0, 2n, x > a; arg (x - a ) -  = n, x < a. The factor, corresponding to the points 
x = +o,, o rx  = --~ in a semi-infinite interval, drops out of the products but is taken account of as the 
limit argument of this factor. For example, if Sl = --~, the factor ( z -  sl) drops out and, by arg ( z -  tl) ~/z, 
we mean lim arg{(z - tl)(Z - s ) }  ~/~, s ---> ~.  Furthermore, if both of  the semi-infinite intervals belong to 
the same set, then, in numbering them, we shall assume that they are a single interval. 

We now construct the two canonical solutions such that one of them (we retain the notation Fc) ensures 
the specified power behaviour with the exponent of  -1/2 at all of the nodal points sk, tk, aj, bj with the 
exception of  the fight-hand ends of  the semiclosed intervals (a~, b~,) 

1"] e iYtz) Fc(z) = Zo(Z) (z) , II = 1-101"Ill'I21"l 3 (4.7) 

J" ( z -  bj") -~  t _ b" 
n : = n  , n , =  n 

~=t (z-aT)~ .: b~Et.lsk z -an ) 

We simplify the solution of the inhomogeneous Dirichlet problem (4.6) 

['l Y(z)(qJ(t))~ ~t)]} dt ,__ (4.8) 
~ = g t  j=l • t - Z  

J 
r ( z ) =  I-1 ~[(z-aj)(z-bj)  

j = l  

by noting that the numbers [rb(t)] are integers; it is then possible to ensure the condition [rb(t)] : 0 
and to eliminate the second integral in (4.8) by the choice 

0, x ~ L** 
[mjl=l[arg(H°H2H3)]=2(K-+J-+e°) '~ e°(x)= ~ ,  x~L** (4.9) 

where K+ and J+ are the numbers of whole intervals from the subsets S and L" respectively, arranged 
to the fight of (+ )  or to the left of (-)  the point x so that 

K=K+ + K_, x~  S 

J=J+ +J_, x ~ L " ,  J=J+ +J_+l ,  x ~ L " ;  L * * = L " u L *  

and L* C L' is the subset of the half-closed parts [an, b~,], that is, such that b~ ~ L/S. We emphasize 
that the following values of the arguments of the functions are taken into account which have 
been calculated for the case when the lengths of all of the intervals from the systems S and L are 
finite 
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[arg{Zo Fll}] = 0, (arg{ Z0 l'Ii}) = arg{ Z0 I-I, } 

/ {-K+ (+), K ÷ - 2 K ( - )  x ~ S  
a r g H ° =  - K + - ~  (+), K + - 2 K + ~  (-), x ~ S  

! {-J+ (+) ,  J+-2J"  (-), x ~ L "  
arg lq~ = -J+  _ ~ (+), J+ _ 2J" + ~ ( - ) ,  x ~ L" 

_l arg FI~ = {0, x ~ L* + ~ ,  x~L* (arg{l-I°H2 }) = -~(K + J")  

Taking account of relations (4.9), in the remaining integral we have 

(n / )  = rtwj- arg {z0n~ }(t) 

= m; -±arg{n0rI2rI3J = m~. + K+ + J " -  J_ - e  o 

The requirement ¥(z) = O(1), z ---> ~o is ensured by the conditions 

O])(t)) t tdt=o,  / = 0  ... . .  J - 2  (4.10) J 

E J r÷(t) 
j=l L i 

whence the numbers wj are found by inspection and then, taking account of (4.9), the numbers m T as 
well as the quantities 7j, which are related to c/by the equalities 

2 c j = a  t +bj + ( b j - a j ) e x p ( - i T j ) ,  0 < 7 j < r r  

Here, it is useful to take account of the fact that the right-hand side of the first equality of (4.9) is an 
even number and that the number wj is an integer in the sections L / ~  L** and fractional and a multiple 
of 1/2 i fL j  ~ L**. As  shown in the example in Section 5, the numbers wj are determined with a certain 
arbitrariness which only affects the signs of the canonical solutions. 

The other canonical solution is the product Yo(z)Fc, where 

j, 
Yo(Z) = Y(z)Y~(z), Y~(z)= I'I ( z - b ' ) - *  (4.11) 

j=l 

It, on the other hand, acquired root singularities when z -~ b~ but loses them at all the remaining ends 
of the intervals (aj, bj). At the points S/I' and T/S, the above-mentioned solutions have the same 
singularities. When z --> oo, it follows from (4.7) and (4.11) that 

F c - z  -r, Yo(Z)F c - z  -s, r = K + J + J " - I ,  s = K + J ' + J " - I  

and, then, the solution of problem (4.2)-(4.4), which is bounded at infinity (it was previously required 
that it should vanish [4]), takes the form 

F(z) = F~ (z){Pr (z) + iQs(z)Yo(Z) + F~ (Z) + F2 (z)} (4.12) 

Fj(Z) = ~ / !  fR(t)dt fR(t)= I~((;;i  / ~ s  
Fc+(t)(t - Z)' t t ~ T 

F 2 ( z )  = Yo(z )  ~ +.-7-77-. - I [ f , ( t ) ] d t  =_ i Y o ( z ) F 2 ~ ( z )  + F22(z) 
, - z  

f,~(t) = f±(t){F+ (t)} -I - Ft(t) 

where Pr(z), Qs(z) are polynomials of degree r and s with real coefficients, the number of which is equal 
to 

r + s + 2= 2K +J +J'  + 2J"= K +M + 2J 
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since the equality M = K - J + J '  + 2J" can be proved. To determine these coefficients, we have 
the two conditions at the infinity, the 2 J -  2 conditions for the elimination of the artificial poles of the 
solution at the points z = cj and the K + M conditions for the uniqueness of the displacements on passing 
around the zones of closure and slippage, taking into account of the specification of the discontinuities 
in these quantities at the nodal points. With this, the construction of the general solution has been 
completed. 

Proceeding to an analysis of the solution, we first note that the general solution (4.12) contains the 
product of functions with oscillating (physically improper) singularities at the nodal points S/L and 
L/S, which are generated by the canonical solution Z(z )o f  the Riemann problem (4.3), (4.4). These 
oscillations are damped with a factor exp [iv(z]) in the ge~neral solution, where the function ~t(z) is 
the solution of the Dirichlet problem (4.6). Moreover, the corresponding factors, which oscillate 
with opposite phase, are concealed in the Cauchy type integral (4.8) and are only explicitly separated 
out in the asymptotic forms, which are presented below, where these "improper" oscillations are 
completely eliminated in this way. However, it is known that the zones of such oscillations can grow 
when shear forces predominate or in dynamics. There is no such superposition of singularities in the 
solutions presented in sections 2 and 3 which are more convenient, for example, in the numerical 
implementation, and it is also desirable to eliminate it in the specific definitions of the solution 
(4.12) as was done in Section 5. Although the solutions presented in Sections 2 and 4 must be identical 
when there is a single slip section, the transition from one solution to the other in a general form 
is extremely non-trivial and a set of variants arises. It is therefore simpler to solve the problem 
anew. 

In the case of the application of the vectors of the forces (---Fro, Zm) at the points x,, E T, y = __.0 
and when there are no other loads, the functions determining the particular solution of the problem 
take the form 

l M (130+ix)Fm+Z,n yo(z ) ~l(t)d t 
F j ( z ) = - -  Y. - - + -  . . . .  , F2(z)= ,[ 

Y~ ( t-~z - t ) 2iti ,.=; ×F~ (xm)(x m - z) It 1. 
(4.13) 

We now present formulae for the boundary values of the required complex functions which are useful 
for calculations. We will first indicate the limiting values of the auxiliary functions 

~-+(x) = Itwj -arglZ0(x)l-ll(x)} +ivo(x), x e L i 

¥±(x)= ~0(x), x ~ R ,  ¥o(X )= YJ(x) ~ (rlj(t))dt 
It 1. YJ( t ) (x- t )  (4.14) 

y±(x )=y j ( x ) x {~ i ,  xELj , IZff(x) l={" x e L u T  
by <x<aj+ I I~1 ±½, x e S  

YJ(x)=(-I )J-J lY(x) l ,  argZ~:(x)=a~ in x - s k ,  x e L u R  
k=l X - -  I k 

+ =, l 'e± + + g e l  

[+~G±flc+F~(FI+F2), x ~ R  

F±(x)= F:(x){P~+-QylYJ + ~ + F2}tx)+if±(x), x e L  

Fc~(x)= (_l)m~ II, L-L** I H(x) I exp{-T-¥o (x)} x x e 
1, x~L** 

F±(x) = F:(x){P r + iQsYiV j + F t + F2}(x)+-I G±fRfx ), x ~ R 

II, x ~ T  
F)(x) = (-I) r+ +~+ II-l(x) lexp{iwO(x)} x t -v-i, x ~ S 

~¢*(x)=¥o(x)+arg{Zo(x)Ill(X)}, G+=I,  x ~ R  

G - = l ,  x~T;  G - = k - ; ,  x ~ S  
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Here, the integrals are understood in the sense of a principal value, if they do not exist in the 
Riemann sense. It is obvious from (4.14) that the functions F-+(x) satisfy all the boundary conditions 
(4.2)-(4.4). 

The symmetric stresses in the intervals of contact and the corresponding discontinuities in the 
derivatives of the displacements in the domains of incomplete contact and opening are expressed in 
terms of the boundary values of the function F ( z )  as 

~=×(X-I)#--13o't+×.Ts, ~=(X-l),~-+j? s (s) 

(~ = ×(,E+ _ ~-)_13o(Xo), [U] =/~{(r .+×),  ~+ + ( r~ -× ) f - }  (L) (4.15) 

[V]=/-/2{2×F + + ( p - x ) f l }  , [U]=21~/~]7 + + /~ ( I -d - t ) f 2  +Po[V] (T) 

The behaviour of the function F(z )  close to the singular points a is determined by the following asymptotic 
forms, where the terms O(ln (z - a)) and O(1) which ensure that the boundary conditions are satisfied 
locally, have been omitted: 

• . -  I ~ + i o t  

F(Z) - {l-I'ol'ItI-12H3}(a)exp{iV(a)}{Pr + iQsY 0 + Fi + F2}(a) (z - sk ) 
( z  - tk )½ + i ~  

z ---> a = sk, t~ ~ S/T~T/S 

t + 
F±(z) - i ( - I )  ' IX I ±'° {I n l r~fF2~ + Qs)l(a)(z -a )  -½, 

+ i I ~=mj ,  b n - b j ~ L / T ;  l / = m T + l ,  l ; = m ; ,  

m +. 
F+-(Z) - ( - I )  I +t p(a) i r loHiFl2n; I (a)(z - a )  -~,  

, :  I l'l;l'Ill"12II3 I (a)  x t i' 
F±(z)~(-I)  / 13.1 ±½ P(a)  ~ l z - a  _+l, 

P(a)={Pr+~ +F22}(a), j : a = - a j ,  bj;  aj  = t  k, bj = s  k 

,,+ I HoHIH~I-I3 I(a) x {-I, a = a ~  
F-+(z)~(-I) ~ P(a)  ~ / z - a  -T-i, a = b ' ~  

z--~ o = b~ 

b~ =-bj~L/S 

a = a ' .  e T / L  

a = s ,  e L / S ,  

a = t  k ~ S / L  

(4.16) 

where a prime on a product denotes that a pair (or, according to the sense, one) of the factors, which 
tends to zero or to infinity as the point investigated is approached, drops out from it. In the derivation, 
general methods for investigating the behaviour of Cauchy-type integrals with different singularities in 
the density have been used [11] and, in particular, the product of a logarithmic singularity and a power 
singularity as, for example, in the case of the function ~-+(z): 

f i ,  l a - s k  _ z - s  m _ a ) N  ) ~+- = x w l - a r g H l ( a ) - t x I n  etln ~ i ~ r t + O ( ( z  
k=l a -- tk Z -- trn 

Z--~ a = t  m, s m =-a t , b I ~ Sm/  L I, L t l  S m 

The relation between the flow of energy into the cut tip and the stress intensity factors has been 
presented previously in [2], where it was pointed out that, unlike the case of a homogeneous plane, 
these quantities remain bounded and, generally speaking, are non-zero when Co --> cR. The conditions 
for smooth separation at the nodal points T/L and L/T are ensured by the equalities which eliminate 
the singularity at these points shown in (4.16), 

{Pr + +F22}(a)=0, a = a  I, b t, a n, a n ~ T I L "  (4.17) 

{F21+as}(b.)=0, b~ ¢ L ' / T  

from which these points of separation are determined. The liquidation of these singularities follows 
from the conventional constraints in the form of the inequalities: Iv]/> 0, in the domains of separation 
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boundaries of the slip zones are specified, the separation is not smooth and negative contact pressures 

the cerl~inly of the correctness of the choice of numbers ~nd the ~rrangement of the slip and open 
intervals in an actual problem. The uniqueness of the solutions of problems with alternative contact 
~on65aSons'nas~een ~ro~ e6 5n ~53.). 

5. T H E  STEADY M O T I O N  OF A CUT 

As an illustration, we will consider the motion of a semi-infinite crack-cut along the boundary of 
s~-pa~'~i~ -~a-~ " ~  ~ '~ ' i~  ~f  ~, ~.~-a~'~,~, ~i ' i~ ' ,~ -a'~'i-rr~ -fwi-c~ -:--(Co, E0~, E0 >- '~ -?~'p~,'d "at ";.'i've 
points x' = 0, y'  = -+0 of the stationary system of coordinates (z" = x" + iy'). The crack is open in 
the interval (an, b~), conditions of frictionless contact are satisfied in the arc (--co, al l  and in the 

during the course of the solution. For brevity, we will symmetrize the problem by means of the 
CDn~orma~ mapp'mg z = Ib ~ Az')/3 -Az ' )  -t ~ n  eDnespDnfence O~ I~ne p6m~s ~( = ,,~, ~ ,  nz, b~ ¢=> z 
= -1, 1, --a, a. The open, slip and full contact conditions are now respectively satisfied in the 
intervals 

( - a , a ) = T ,  ( - I , - a ] • [ a , I ) = L i u i . a = L ,  ( - - -~ , - l ]u[I ,o , , )=S 

an~ ~he ~orces are app~e~ a~ ~he po~n~s x = b, y = ±~; --a < b < a. ~Ne vei~ seek ~he solution in the 
~arae c}ass o~ ~nc~oz~s as "m ~,.~2) w ~  ~be excep~'~on of ~ e  bebav'~ouz "m ~be ne'~gbbour~oo~ o~ Zbe 
point z -- -1 ¢=> z' -- ~ where we require 

F(z) = O{(z+ I) ~ } + O{(z + i) 2 } (5.1) 

Tflis equality implies, in parffcuCar, that there is no pole at infinity in the function F i n  the z 'plane, i~ae 
real constants a and b are determined during the course of the solution and the quantities al, bl and 
A are then established using the formulae 

= 2 s  I ( a  - b )  I - b 2s, (a + b) b I = A = 
a, ( I - a ) ( b - I ) '  ( l + a ) ( I - b ) '  2s, 

The procedure for removing the root singularities at the points z = _a  enables one to determine 
the two free constants P0 and Q0 in the solution. The integral, which determines the function F2(z) in 
(4.13), can be calculated using the theory of residues. We transform the integral (4.8) for ~(z) so that 
the oscillating function Zo(z) is completely annihilated in this case and, when account is taken of relations 
(4.13) and (5.1), solution (4.12) can then be written in the form 

F =  13-1 ±½ (z+l)~exp{iv(z )}  {/~0 ~ +iF0 l (I-b)(z+a)(z__+/). 
(z + i~l)(b - z) b - a (I + b)(a 2 - b 2 )(z - 1) J 

(5.2) 

F0 = +_ (Y-. + i×F 0 )(b + iy)(a - b) ~ 

2rt×(b + I) ~ exp{iv.} 
, Z , = Z  0 + I 3 0 F  0,  ~ . = W o ( b )  

{ !  wj+rC'arctg(~ll t)  dt i ~ at} 
= g(z) ig+(t)(t - z) + Y÷(t)(t - z) 

- a  

Y ( z ) = 4 ( z 2 - 1 ) ( z 2 - a 2 ) ,  j = l , 2 ,  w l = m ? +  ~ ,  w 2 = m  ~ 

The signs __. in the second equality refer to the upper and lower half-planes, and, to calculate the functions 
at the interface, it is useful to know that 
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~±(x)=Ttwj+arctg(y/t)+i~o(X) (L), ¥+-(x)=~o(x)+it~ (T) 

¥±(x)=¥o(X) (S) 

¥o(X) = YJ(x)J wj +rC)-. arctg(y/t)dt+ ] y~)°~YJ(x) dt 
L rJ (t)(x - t) -a 

The expression for the functions Y:(x) is presented in (4.14). The condition that there is no pole at 
the point z = c = -/y gives two real equations for determining the constants a and b in terms of the 
quantity y 

I(l+b)(y2 +b)(Y 2+1) _ Fo AoZ. + xl"o Q __ .),2 (5.3) 
2 ( I -b ) (y  2 - b )  -~-o = Z , -  ~a.oF o 

m 0 = 
y e o s ~ .  -bs in  ~ ,  

ysin ~ ,  +bcosw.  

The solution of the equation in (5.3) is non-unique if the non-intersection condition is not taken into 
consideration. The principle behind the choice of the proper solution is as follows: we dwell on the 
solution which ensures the greatest permissible length of the slip zones around the the cut tip: 
max (sl - bl). It has been shown using a similar example [13] that the other solutions lead to a violation 
of the physical condition [v] ~> 0 in the interval of opening (0, sl). 

In the unique auxiliary equation, which is analogous to (4.10), with the substitution a = ~ ,  integration 
with respect to L1 reduces to integration with respect to L2 and, then, both integrals (over the intervals 
L2 and (--a, a)) are reduced, by means of a change of variable, to an integral of a function with a weak 
singularity 

~ 2 / / ( a r c t g ( ~ / + / t  n. / + 2oot }d~=O (5.4) 
0 / q l  ~ [ q )  2 ) 41_T4sin2t~ 

q = i l  - ( I  - y4)sin 2 

The result can also be represented in terms of complete elliptic integrals. 
The value y and the difference n ° = w2 - wl = m~ - m~ - 1/2 are uniquely defined from (5.4). One 

of the integers, for example, w2, can be assigned arbitrarily and, then, Wl = w2 - n °. It can be shown 
that, when w2 is varied by an integer w, the integral determining the increment in the function ¥ is taken 
and it will be equal to my, and this can only lead to a change in the sign of the canonical solution. 

The angular distribution of the stress intensity factors can be calculated, starting out from the 
asymptotic forms when z ~ 1 

F(z) + 4iFo I ~ I ±~ (z - 1) -~  
=_ 4(l_b2)(a2_b2) +O(!) 

When ~. = -1, t~ = 0 (in particular, the same materials), the slip zones are lost: a = 1, bl = sl, 
al = --~. As the parameter tx increases, the length of the opening zone decreases while, however, 
remaining finite on attaining a velocity CR since, as c ~ cn, we have 

IHI .2 l -~.o,  x - ~ x r ; ~ O  ' oo, ~,~-~0,  13/~-~1, tx--~** 

This agrees with a qualitative analysis of the approximate solution of a similar problem for different 
isotropic materials where only a single slip interval close to the tip was taken into account [13]. 

In conclusion, we note that the solutions obtained, generally speaking, extend to a wider range of 
subsonic velocities. For this, it is necessary that the ellipticity of the initial system of equations should 
be preserved and it is necessary that an analysis is made of the existence and the relative distribution 
of the zeros of the characteristic functions, that is, the velocities of the waves localized around the 
interface and corresponding to the different contact conditions of the anisotropic half-planes. It follows 
from physical considerations that an increase in the degree of of constraint on the interface boundary 
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leads to an increase in the velocities of the boundary waves, and this means that these velocities lie 
above the value cR. 
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