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Sclutions of mixed dynamic problems are constructed in the case of a piecewise-homogeneous plane coinciding with the plane
of symmetry of the elastic properties of the medium, that is, the most common case of anisotropy when the plane and the antiplane
problems separate. Conditions for the stress and displacements vectors are specified in three combinations and of certain equivalent
versions on the straight interface between the two materials. For example, the tractions on the open intervals are given, at the
slippage, the shear resistance and the discontinuity in the normal displacement are specified and, in domains of cohesion, the
discontinuities in the stresses and displacements are specified. By introducing new complex potentials, the common representations
of solutions in steady-state dynamics {1, 2] can be successfully transformed to a type of boundary-value problems which has
previously been studied [3-5]. The following problems are investigated as examples: the problem of a notch with an unknown
section of contact of the edges due to an external stress field, and the problem of the motion of a semi-infinite cut under the
action of forces applied to the cut surfaces, with alternative conditions of their contact {opening or slipping). © 2001 Elsevier
Science Ltd. All rights reserved.

Problems in the steady-state dynamics of an isotropic, elastic half-plane and the statics of an anisotropic
elastic half-plane with two types of boundary conditions were investigated for the first time by Galin
[6] and Savin [7]. The first solution was constructed [8] for a combined plane consisting of two different
isotropic materials with three types of contact conditions but with a single slip interval. Subsequently,
a general solution of the Riemann-Hilbert vector problem was given [3] which can be factorized by
methods of analytic continuation and conformal mapping of a domain. Similar problems with many
types and combinations of conditions in a number of sections have subsequently been studied in the
case of a half-plane or an orthotropic plane with narrow notches [5]. It has been shown that these
problems reduce to a new combined boundary-value problem in the theory of functions of a complex
variable, with conditions of the Riemann and Dirichlet type in different intervals, which admits of a
general solution in terms of Cauchy integrals [4].

In this paper, we give an explicit definition of this solution with simplifications applying to the aims
of the investigation and, also, a derivation of the formulae for the boundary values of the required
quantities and the asymptotic forms at the nodal points.

Three types of conditions are also considered in the treatment of the static problem of a crack at the
interface of a combined anisotropic plane using the method of boundary integral equations [9].

1. FORMULATION OF THE PROBLEM

We will consider the plane problem of the interaction of two anisotropic, linearly elastic half-planes
made of different materials. In the systems of intervals S = U S, 8¢ = [sp, tu), k= 1,..., K, 5y <1 <
... <[, the half-planes are bonded together and, here, the discontinuities in the stress and displacement
vectors are specified while, in the sections under the slip condition L = U L;, L; = (e, b, j = 1, ..., J,
the shear stresses and the discontinuities in the normal displacements and stresses are specified. In the
remaining intervals, T = U T,,, m = 1, ... , M, the surfaces are open and the tractions on them are
given; x, y is a rectangular system of coordinates moving at a constant, sub-Rayleigh velocity, ¢, and
materials 1 and 2 occupy the half-planesy > O andy < 0.

The formalism in [1, 2] is based on the following notation for the Navier equations in the case of the
steady-state spatial dynamics of an arbitrary anisotropic body

Cinitea =0, Gy = Cy “P"gsjksl.‘suv LjkI=123 (L.1)
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where {Cyy} is the stiffness tensor, u = (uy, u,, u3) is the displacement vector, p is the density and &
is the Kronecker delta. The effective tensor {Ciy} loses some of the symmetry properties and remains
invariant only with respect to change of subscripts Cjyy = Cjy;. It is well known [1, 2] that the general
solution of Egs (1.1), which only depends on two variables, can be expressed in terms of three
holomorphic functions d(z;), zx = x + ppy

t=(0,,,0,,0,3)=20Gd}, u, =2R{Ad], &={0,(z)) (1.2)
$= (0,44, 0,,.0,3) = 2R{pci A~ GT b}

where ¢ and s are stress vectors, and the matrices A, G and T depend on the solution of the eigenvalue
problem

3 o 13
Y (Gl + Po{Clie +C§jk|)+P§C2jn]A&q =0 (1.3)
9=l

det{CTypy + Po(Cljea + G 1+ P:CEjkz} =0

The normalization of each column of matrix A is arbitrary. When ¢y < ¢g, where cg is the smaller of
the velocities of the Rayleigh waves in the direction of the x axis, all the eigenvalues, generally speaking,
arc complex and, among the three pairs of conjugate roots of the second equation of (1.3), the three
roots with the positive imaginary part p, (k = 1, 2, 3) are selected. The coefficients of the matrix G are
then determined using the formulae (for the definition of T, see [2])

G.. =

3
ja 1Cju1 + PCajat Ay = -E-l {Pglcijn +Clial Ay (1.4)

M

k

1

If x, y is the plane of symmetry of the elastic properties, then Ciy, = 0 for the sets of subscripts
containing an odd number of numerals 3. The equation for «; in (1.1), and this means also the equation
for the antiplane problem, are separated from the equations for uy, u; = u, v (the plane problem) and
the determinant in (1.3) is decomposed into two cofactors such that the root p3 and the sole component
Ajs of the corresponding eigenvector are calculated independently.

We will henceforth confine ourselves to the treatment of the plane problem and seck the vectors
t = (04, 0,) = (1, 0), U = (u,, v,) = (U, V), starting from the representations in terms of the complex
potentials, by putting i, J, k, /, g = 1, 2 in (1.2)~{1.4). The unusual cases of multiple and real roots py, p,
which require a different approach, are not considered. Then, the solutions which are constructed below
do not degenerate when ¢y — 0, as in the case of isotropy, and include the correspondent static problems.

The boundary conditions of the main problem

t=ti) (M, =1, [VI=W&) @) (1.5)
[=t.(x), [U1=U,(x)(S), tot,, x*+y’ -

where the plus and minus superscripts denote contraction from above and below onto the axisy = 0
and the right-hand sides satisfy the Holder conditions, are then split into parts which are symmetric
and antisymmetric with respect to the stresses, using the notation

£ =<f>5%{f*<x,0)+f'(x.0)l. +2f% =[f1= f1(x,0)- f(x.0)

Correspondingly, we construct the fields t,, U and t,,, U, the sum of which is the solution of the initial
problem (1.5). In the case of a problem with asymmetric stresses and null conditions for [U,] at the
interface with the condition that the solution vanishes at infinity, it follows from (1.2) that there is a
separate Dirichlet problem for the upper and lower half-planes, the solution of which is given by integrals
of the Cauchy type [10]. The right-hand sides of the boundary conditions in the case of a problem with
symmetric conditions for the stresses (the subscript s is henceforth omitted) then become known

t' = ()T, [1]=0, [UI=U, (S

t*={tg}, [06]=0, [V]=V. (L) (1.6)
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For closure, it is necessary to supplement this problem with a set of specified discontinuities [u] at
each joint of the intervals 8§ and T and of the discontinuities [v] at the remaining nodal points.

We now introduce the vector functions h = (h, 4;) and %(z) = (%, X2Xz = x + iy) and also the matrices
B and H using the formulae

h=2Gd, x =ik, x2=hy+Poh
B=iAG™', H=B,+B,=(H,), H,=H,>0 (1.7)
Hy,=Hy, =H+ifl, detH>0, By=HIH,

Here and henceforth, for brevity the notation g = ¢ + ig is introduced for any complex quantity.
The matrix H, which is defined above in terms of the matrices B, referring to materials 1 and 2,
is Hermitian and positive definite. We also note that H,, H,, H are invariant under a permutation
of the positions of materials 1 and 2 while H changes sign. Below, without loss of generality, we put
H>0.

The analytical continuation h = h(z)= h follows from the symmetry of the boundary conditions in
the stresses (1.6) and (1.2), (1.7). The stresses and the discontinuities in the derivatives of the
displacements on the boundary can be expressed in terms of the boundary values of the function h and,
then, using formulae (1.7) and relations (1.8) presented below, the potentials %, can be expressed as
follows:

t=%{h*), [Ul=J{Hh*} (1.8)
6(x) =13 ()~ BoXi (X), XY =% (%) (1.9)
[V(x)]= Hy By () + X3 (0}, [U))= AL (x)+ 15 ()] +Ba[V(x)]
__i — ﬁz_HlHZ
B_ Hz ’ g— FIHZ ’ C<B<0

We now use the fact that the boundary conditions when y = %0 in the planes z and z; are written
identically. Actually, the problem will be considered in the z plane and the functions x,(z) will be found.
The functions h;(z) are then found from (1.7) and the initial potentials ¢(z) = G ~'h(z) are recovered.
Finally, the variable z is replaced by z; and the field outside the boundary can be calculated using formulae
(1.2).

The generalized Riemann-Hilbert boundary-value problem follows from relations (1.6)-(1.9): it is
required to find the vector %(z), which is holomorphic in the upper half plane z using the following
conditions on the real axis

TIDX)) = f(x), —eo<x < oo (1.10)
T 1 O _ A I _ 5
D—D,_"(] i f= 5 (1), D—"O ?u f= fz'(L)
1 fa -1
= = = =H V,, -

h = (To). f2 = {0 + Bof
fa=H3'V., fi=H"W.-BV.)

and satisfies the constraints on its behaviour at the nodal points and at infinity, which are usual in the
theory of elasticity. Unlike the case of the similar scalar problem, no general method is known for solving
the generatized coupled Riemann-Hilbert vector problem with three or more types of boundary
conditions. It is important, however, that the initial problem can be reduced to problem (1.10), which
belongs to a special class of such problems: the upper rows of the piecewise-constant matrix D are real
numbers and the lower rows are imaginary numbers. This is achieved by introducing the new potentials
X« (the functions A; and the matrices B and H were introduced earlier [1, 2]). Factorization of the vector
problem then becomes possible [3, 4].
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The solution of problem (1.10) in Section 4 will be constructed for the case of a finite length of all
the intervals from L and S. Other cases, including discontinuities of the boundary conditions at infinity,
can be treated using a corresponding passage to the limit or an elementary conformal mapping of the
plane, converting an infinite point into a finite point. We also note that the specification of the far stress
field is not always arbitrary and must be matched with the boundary conditions.

By substitution T & 6, U <> V' (the subscripts on Hy, hy, %, change places) and, also, using the duality
T+ U, 6 & V and, then, the substiution T & o, U <> V and inversion of the matrix B, it is possible to
obtain formulations of the new boundary conditions which are equivalent to (1.10). We shall initially
consider the case when the solution is constructed by the method of conformal mapping, which is simpler
and more readily understandable.

2. ONE SLIP SECTION

suppose there is a slip section [-1, 1]. First we shall remove the inhomogeneity in the boundary condition
by considering the difference

. 1L f(ndt
X=xox". X =OCa) =~
X=X X =003 n_j, o

Boundary-value problem (1.10) with the modified right-hand sides (f — fp)
fo=hr-%) (T, f=0 (L) fH=(/.6-8-x2) (5 (2.1)

is obtained for the vector function X(z). A method of solving this problem was proposed earlier [3].
Briefly, it is as follows. We continue the function X(z) analytically across the interval [-1, 1]
X(z) = X(@). The Zhukovskii conformal mapping: z = (@ + 0 )2 (® = & + in = z + V22 -1) converts
the z plane with the cuts |x| > 1,y = +0 into the upper half-plane ®, and the interval {-1, 1] into an
upper semicircle of unit radius with correspondence of the points x = 5%, £5 < £ = (50", ()*". In the
case of a vector ® = DX, where X(w) = X(1/®), ) = 0 and &(w) = ¢$(1/®), which is piecewise-holomorphic
in the o plane, we obtain the matching problem in which the coupling matrix on the boundary is equal
to the identity matrix in the sections from T and is equal to a certain matrix D° on Sw = (5, §,) U (55,
). By diagonalizing the matrix D°, the problem reduces to determining just one scalar function W(w)
using the matching boundary conditions, the solution of which is constructed in the standard way [11]

and is presented below
W+
xW —xW

ot Fey fx K
i, =11 [MM] , 2’“'112"——{(5—!)1:1 (z—sk)(z-zk)}

X= . W=T{R+1), O=M,0, (2.2)

-5
p | (s -Dw-1)
K+i

& - s
R= 3 nw', n=-F, I=—]
-K-1 L

Wwe(r)dt
I ()t — w)

x=yCB. W =T 'Bg=(W", W) (S,). W=Tg (T,

B, =D,D;'. g=fxE)]=(2.8) I§I>]
[N In|A| d—1 ®
, o= . A= <0, d=-—,
% —>¢| R d+1 £
gm(E.») = (—l)mgm(lli). I’it <1
where d, an analogue of Dundurs’ parameter, determines the degree of difference in the elastic propertics
of materials 1 and 2, and, in order for the integral to exist, a constraint is required on the nature of the

decay of the specified functions as x — = e, We construct the cuts for isolating the single-value branch
of the function IT;{w) along S, and the condition 1¥ = 1 fixes the set of branches of its cofactors. The

A1
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free 2K + 3 real constants in solution (2.2) are determined from the two conditions for matching the
stresses at infinity with the specified remote field t.. and the 2K + 1 conditions for the single-valuedness
of the displacements on going around the open and closed intervals [10], taking account of the
discontinuities in the displacements specified at the nodal points.

If the two pointsx = *1 are boundary points for the intervals L and S, then the corresponding factors
(z-s;) and (z - ¢,), sy = -1, 1,, = 1 have to be removed from the product ITy(z). When the slip zone L
is also contiguous with a cohesive part from S and with an open zone from T, then, apart from
the removal of the corresponding factor as in the preceding case, the factor yz + 1z - 1is added to
the function IL,(z), which compensates for the irregular behaviour of the solution at infinity. The
polynominal (either the upper or the lower signs are chosen)

X
R= Y not, n_,=2%r,, k=0..K+1, x=%leL/§, x=FleT/L
—K=

is also subject to a change and the number of free constants is equal to 2K + 2 if the boundary conditions
do not lose the discontinuity at infinity and are identical with the number of additional conditions of
the problem.

Close to the nodal points z = =1, we have an ordinary root singularity of the solution: at the boundary
points of S/L (the interval from S is located to the left and the interval from L to the right) and L/S,
the oscillating singularity automatically vanishes since the same cofactors are cancelled in the case of
the function Il;(w). This singularity also disappears at points of the type of T/S on the surface
d =0« |A| =1, @ = 0 in the phase space of the elasticity constants.

3. ANARROW NOTCH AT THE INTERFACE

We will now consider an exampie of a static problem with a single frictionless slip zone [-1, 1], which
is formed by the closure of the sides of the notch (a, ), a < -1, b > 1 under the action of a remote
field 7.,, 6., < 0. Initially, it had a constant opening 8§, which it subsequently only retains at its ends.
Solution (2.2) takes the form

. (A—w)(1-Bw) !
m=ge, =980
1= Ao-D@-8)" 7 4l ~1)(a-2)e-b)

(3.1)

R=r,o’ -0 +ro-F0~" +ip, /=0
#=0, A=a+va’—1, B=b-+b’—1

From the conditions at infinity, which include the fact that the coefficient of zVin the expansion of
W{(z) when z — <= is equal to zero, we extract the complex coefficients r; and r,:

= O +ﬁotm + ‘.x‘[w exp{iu In é‘
2T A+ AR

B} (3.2)
n =n(2ia(a® —1+yb* -1)-a-b}

The conditions that the displacements should be sin%le-va]ued on passing around the whole of the

contour of the notch will be satisfied if the term O(z™) is missing in the expansion of the potentials

[10] and the condition for the discontinuity in the normal displacements to grow by an amount §; in
the interval (1, 2) remains for calculating the coefficient g

[ (Vidr =8, [VOOl= 20H,W* () (3.3)
1
ro ={(xHy) '8 — 1)1y I = 2] TIH{x)y,(x)dx

1

v, = T} (x X RIE(x)]) - in)expliIn @) )], W, =cos(tin]| ¢(x)])
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In the calculations, it is useful to take account of the smallness of the constant o in statics and low-
speed dynamics and to neglect terms of the order of o compared with unity in (3.1)—(3.3). However,
as the velocity ¢, approaches cg, the magnitude of o increases to infinity [1, 2].

We determine the unknowns ¢ and b from the condition for there to be no singularity at the boundary
peints of incomplete contact of the smooth surfaces z = *=1: 27; *+ 27, 4 ry = 0. In the physical plane
where the ends of the notch a° and b° are specified numbers and x{, are the required boundaries of
the domain of contact of the notch surfaces, we proceed with the transformation

ab" ~a’bx(a’ -b°)
a-b

z,_:(a -b")z+ab’ —~a b; k=t xl, =
a-b ’

A solution obviously exists if the numbers xj ;, obtained satisfy the inequalities a® < x] <x3 < b°.
The beginning of the closing x] = x3 determines the limiting surface o7, = o’ (t..,...) in the parameter
space.

In the case of symmetry (1. = 0,a = -b)

. —:‘Q,,,l)«.l}i
rz =H’2 =__x(_l__i')——!

I, =25laEWi—a ) = b), §=Qa ' KH1-a2)

where K and E are complete elliptic integrals of the first and second kind.

We use the equation for determining the point of separation 2#; + ry = 0 to solve the inverse problem
of determining the magnitude of the stress 0. as a function of the length of the overlap of the
notch 2/,

1{ &
=F =—doval —1#, =2 _y
=4 a i R ‘.Q[tz 1]

So 12 +1A ) Lo =
- , = — ]
2H, 1, (1) ¢ { -2 (34)

-G,

where, for convenience, the half-length of the notch has been taken as the unit of length
(renormalization), the opening & has already been divided by this half-length, and the accuracy of the
formula is O(c;). When I — 0, the limit /; — 1 exists and it is then simple to find the limit stress o
from (3.4). It is identical with the value which can be extracted from the solution of the corresponding
problem of a notch where its sides do not come into contact. On the other band, if / — 1, then
lo~n(l-Nando. ~(1-17" > e,

4. THE GENERAL CASE

Suppose the number of intervals L, is arbitrary, J > 1. From these intervals, we separate the semi-open
parts (having just a single point in common with T) {a,. b,y e L' CL(n =1,...,I), the closed parts
(with two such points) [a}, bj] e L" C L (! = 1, ...,J”) and the open parts J - J* — F. Following the
procedure described in [4], we express the solution of the vector problem (1.10) in terms of the single
scalar function F(z)

x(@=x""FR)-IYFOL j=12 (4.1)

Substituting expressions (4.1) into conditions (1.10) we obtain a combined boundary-value problem for
determining the piecewise-holomorphic function using the conditions for a Dirichlet problem in L and
the conditions for a Riemann probleminR=T U §

Fro=fix), 2f*=x"f1f (L) (4.2)
FHxy= F(x) + frix), fr=n'fh+ifi (T) 4.3)
dfs + l_ﬂ‘

FHx)=AF (0)+ fg(x),  fo= (8) (44)

B+x

Unlike the conventional boundary-value coupling problem, the general solution of the combined
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homogeneous problem corresponding to (4.2)—(4.4) is found using the two canonical solutions since,
in this case, it is impossible to select the single canonical solution with the largest permissible singularities
at all of the nodal points and, consequently, having the greatest order at infinity [4, 10]. These solutions
are sought in the form of the product of the canonical solution of the Riemann problem (4.3}, (4.4),
Z(2), the auxiliary functions I,(z) and I1.(z), which ensure that the necessary conditions and the proper
order at the nodal points are satisfied, and, finally, the canonical solution of the Dirichlet problem (4.2)

F.(z) = ZI (DL ()™, Z=ZT, (4.5)
x (75, )" K (z-5,) % =
Z,=TI1 33|, my=pp 2= _ 1=
° E](Z-&J o=l -t Jl;I‘ 2=
¥ =1} =nm] —arg{ZMTL}* (L) (4.6)

Here, the integers m; are as yet arbitrary. We order the auxiliary complex constants ¢; in the lower
semicircles with the ends a;, b; and the function I1.(z) is specifically defined below. Cuts are constructed
along the x axis joining the points @ and = for selecting branches of the power functions of the form
(z- a)ﬁ; arg (x —a)* =0, 2w, x > g; arg (x —a)* = 7, x < a. The factor, corresponding to the points
x = +oo orx = —= in a semi-infinite interval, drops out of the products but is taken account of as the
limit argument of this factor. For example, if s; = —oo, the factor (z —s;) drops out and, by arg (z - £,)'%,
we mean lim arg{(z — ¢,)(z - 5}}"2, s — . Furthermore, if both of the semi-infinite intervals belong to
the same set, then, in numbering them, we shall assume that they are a single interval.

We now construct the two canonical solutions such that one of them (we retain the notation F,)) ensures
the specified power behaviour with the exponent of —; at all of the nodal points s, #, @;, b; with the
exception of the right-hand ends of the semiclosed intervals (a,, b},)

FA2) = Zy(I(z)e™'™, T =TT TI, 0, (47

- = h
- (26" =5,
m,=I1 —",',_;'{“ o M= 71 S[ .)
=t (z—a}) n: byeL/S\ 2~y
We simplify the solution of the inhomogeneous Dirichlet problem (4.6)

{Y(z)(n {0, In ,-(z)]} dt

== é I_ (4.8)

|
n‘le,

J
Y2 =1] 1/(z. -a;Nz—b;)
j=i

by noting that the numbers [n,;(£)] are integers; it is then possible to ensure the condition [n,;(#)] = 0
and to eliminate the second integral in (4.8) by the choice

Yt 2 Ji-z

0, xeL”

¥, xel” (4.5

[m;]= ?I[-[arg(Hol'lzlL)] =2HK_+J_+ey) gx) ={

where K. and J.. are the numbers of whole intervals from the subsets S and L” respectively, arranged
to the right of (+) or to the left of (~) the point x so that

K=K, +K., xg8
J=d +J_, xeL”, J=J +J +1, xeL” L"=L"uL’

and L* C L’ is the subset of the half-closed parts [a;,, b} ], that is, such that b}, € L/S. We emphasize
that the following values of the arguments of the functions are taken into account which have
been calculated for the case when the lengths of all of the intervals from the systems S and L are
finite
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(arg{ZoI1;}1=0, (arg{ZyI1,}) = arg(Z, IT;}
I + —K+ (+): K+_2K (—') xeS
—arglly =
n -K,-W (), K. -2K+}), (=), xS
1 + | () J. =27 (=), xel”
—argni = » 1 ”»
n =Sy =) (+), J,=2J"+ )5 (-), xelL
1 + Q X & L* "
—argll; =4 . arg{II, P =-~(K +J4")
ﬂgs{i%,xeL {arg{T1 T,
Taking account of relations (4.9), in the remaining integral we have

(N = nw; —arg | ZoIT, }(2)

‘VJ = m; —‘!‘arg[nonzn3} = m; +K+ +J”_J__ "80
n
The requirement y(z) = O(1), z — < is ensured by the conditions

4 (n;(o)e'dr 0

d 1=0,..,J-2 4.10
=g, Y (4.10)

—

whence the numbers w; are found by inspection and then, taking account of (4.9), the numbers m7 as
well as the quantities y;, which are related to ¢; by the equalities

2¢; =aj+b,' +(b; —a;)exp(—iy;), O<y;<n

Here, it is useful to take account of the fact that the right-hand side of the first equality of {(4.9) is an
even number and that the number w; is an integer in the sections L; ¢ L' and fractional and a multiple
of ¥2if L; e L" . As shown in the example in Section 5, the numbers w; are determined with a certain
arbitrariness which only affects the signs of the canonical solutions.

The other canonical solution is the product ¥y(z)F,, where

y
V()= Y)Y (2), Y=[] @-&)" (4.11)
j=1

It, on the other hand, acquired root singularities when z — b}, but loses them at all the remaining ends
of the intervals {a;, b;}. At the points 8/T and T/S, the above-mentioned solutions have the same
singularities. When z — oo, it follows from (4.7) and (4.11) that

F~727", KWOF~27, r=K+J+Jd"~1, s=K+J'+J"~1

and, then, the solution of problem (4.2)—(4.4), which is bounded at infinity (it was previously required
that it should vanish [4]), takes the form

F(2) = F({F () +iQ (D)) (2) + R (2) + F(2}} (4.12)
_ L frnd _ S, 1eS
A= Zni,{ -z fat® {fr(r), teT

_h@ (L 1 AWM
e B at wd Bl G LN L

fEfm=FEEEmY - R

where P{z), Q.(z} are polynomials of degree r and s with real coefficients, the number of which is equal
to

r+s+2=2K+J+J+2]"=K+M+2J



The steady subsonic motion of cracks and narrow notches 347

since the equality M = K —J + J' + 2J” can be proved. To determine these coefficients, we have
the two conditions at the infinity, the 2J — 2 conditions for the elimination of the artificial poles of the
solution at the pointsz = ¢; and the K + M conditions for the uniqueness of the displacements on passing
around the zones of closure and slippage, taking into account of the specification of the discontinuities
in these quantities at the nodal points. With this, the construction of the general solution has been
completed.

Proceeding to an analysis of the solution, we first note that the general solution (4.12) contains the
product of functions with oscillating (physically improper) singularities at the nodal points S/L and
L/S, which are generated by the canonical solution Z(z) of the Riemann problem (4.3), {4.4). These
oscillations are damped with a factor exp [iy(z]) in the general solution, where the function y(z) is
the solution of the Dirichlet problem (4.6). Moreover, the corresponding factors, which oscillate
with opposite phase, are concealed in the Cauchy type integral (4.8) and are only explicitly separated
out in the asymptotic forms, which are presented below, where these “improper” oscillations are
completely eliminated in this way. However, it is known that the zones of such oscillations can grow
when shear forces predominate or in dynamics. There is no such superposition of singularities in the
solutions presented in sections 2 and 3 which are more convenient, for example, in the numerical
implementation, and it is also desirable to eliminate it in the specific definitions of the solution
(4.12) as was done in Section 5. Although the solutions presented in Sections 2 and 4 must be identical
when there is a single slip section, the transition from one solution to the other in a general form
is extremely non-trivial and a set of variants arises. It is therefore simpler to solve the problem
anew.

In the case of the application of the vectors of the forces (+T,,, Z,,) at the points x,, € T,y = 0
and when there are no other loads, the functions determining the particular solution of the problem
take the form

RN g Bo +in)I,, +Z,,

- )’O(Z)j F{t)dt
3 - xF;"(xm)(x,,, -2)

n oy Y@z-n

F(z)= » F(2) (4.13)

‘We now present formulae for the boundary values of the required complex functions which are useful
for calculations. We will first indicate the limiting values of the auxiliary functions

W (x)=nw; —arg{Zy (O (x)} 2 iye(x), xel,

Y/ (x) [ (n; (Mt
x L V(ix-1) (4.14)

i, xel,; |Z200] 1, xeLuT
» X =
L, bj<x<aj+, 0 |Miyz’ x€S

. . X _
V=7 ol agZix=aX In ”‘—’*
k=] xX=t,

it + FE + B), xeL
t ¥ GE fp+ FX(R+F,), xeR

Wi =yo(x), xeR, wy(x)=
Yx) = rf(x)x{

, Xx€LUR

Frx)= FEGHP. 2O, Y + F + BJx)+ift(x), xel

xeL-L"

m* 1
Frx)=(-1y 7 | ¥ '
e (X)=(-1) 7 | TI{x}| exp{ %(x)]x{ﬂ, oL

Fr(x)= FX(O){P. +iQ WY/ + F + Fé](x)i-%thR(x), xeR

FE(x) = (= )% */+ [TI(x) | expliy® () x {E. reT
Fi, xe€8

vo(x) = yo(x)y+arg{Z, (I (x)), G'=1, xeR
G =1, xeT, G =X"', xeS§
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Here, the integrals are understood in the sense of a principal value, if they do not exist in the
Riemann sense. It is obvious from (4.14) that the functions F=(x) satisfy all the boundary conditions
(4.2)(4.4).

The symmetric stresses in the intervals of contact and the corresponding discontinuities in the
derivatives of the displacements in the domains of incomplete contact and opening are expressed in
terms of the boundary values of the function F(z) as

o=x(A-DF" —Byt+ofs, T=(A-DF +f ()
0 =x(F* = F)=Bo(te). [U]= B{E+0F" +{-n)F} (L) (4.15)
(V1= Hy(2xF* +(B-2)f)), (U]=20HF" + RQ—d™")f, +BolV] (T)

The behaviour of the function F(z) close to the singular points a is determined by the following asymptotic
forms, where the terms O(In (z — @)) and O(1) which ensure that the boundary conditions are satisfied
locally, have been omitted:

(z- 5, )—sz‘a

F(z)~ My T, (@) expliv(a)H P +iQ Yo + F + &}(E)W;
-1

(4.16)
zoa=s, 4, STUTS

FE(2) ~ =) AP (I YRy +0) ) aXz-a) 2, z—a=b]

+
F=m7,

f_ . + ot = ot L
; ; b,,=bjeLlT, lj _mj+l, I =m;, bn_bjeLlS

J 7

Fr(z)~ (=)™ ™ Play| LT, LI, | (a)z —a) %, a=a e T/L
Q4 E2R 43

m?* + ’ i =5 €L/S, ¢b;
FE(2)~ (=" (A% p(a)lnoﬂ.ﬂzﬂ,|(a)x{: a=s, a

z-a t1l, a=1 €S/L

P@ =P+ Fi + Fpla), jra=a; by a; =1, by=s,

M ’ -1, - ;;
Fizy~ (=)™ p(a)monlnzngl(a)x - a a”
'\/Z—a +i, a:bm

where a prime on a product denotes that a pair (or, according to the sense, one) of the factors, which
tends to zero or to infinity as the point investigated is approached, drops out from it. In the derivation,
general methods for investigating the behaviour of Cauchy-type integrals with different singularities in
the density have been used [11] and, in particular, the product of a logarithmic singularity and a power
singularity as, for example, in the case of the function y*(z):

7% | _amEE Tiam + Oz — a)h)

z—t,

KI
wi= nw, —argIT (@) - otin []
k=1

a- tk
z—=a=t,, s, =aq,be8, /L, LIS,
The relation between the flow of energy into the cut tip and the stress intensity factors has been
presented previously in [2], where it was pointed out that, unlike the case of a homogeneous plane,
these quantities remain bounded and, generally speaking, are non-zero when ¢y — cg. The conditions
for smooth scparation at the nodal points T/L and L/T are ensured by the equalities which eliminate
the singularity at these points shown in (4.16},

P +F +Fp)a)=0, a=a], b a,, a,eT/L’ (4.17)

£ +Q.)b)=0, b, eL’/T

from which these points of separation are determined. The liquidation of these singularities follows
from the conventional constraints in the form of the inequalities: [v] = 0, in the domains of separation
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&nd 8 £ 9,15 e Somuins o ©ip cormimy, Alnougn muTe guszh conditiions vt Jnt possive ween ine
boundaries of the slip zones are specified, the separation is not smooth and negative contact pressures
are peTinad We new ssplea deet SgE ¢ T anly susure Bne serreet sombinedivn of g of e
FSPIPISTR Rovires G & and pop ter Sine bl amd iyl G thne el oF et and e @ e gt
Gtk TR AR RV TR RS 15 TR asHTy wireh Tormrare {4.05) 7 st feurdet o oo
the certainty of the correctness of the chejce of nuombers and sthe asrangement of the slip and open
intervals in an actual problem. The uniqueness of the solutions of problems with alternative contact
condmons nas peen proved in $i2).

5. THE STEADY MOTION OF A CUT

As an illustration, we will consider the motion of a semi-infinite crack-cut along the boundary of
sepatation woeei the ation ol & constang, oblitee moving T =0, Dy, D > € imposed 2t e
points x* = 0,y = *0 of the stationary system of coordinates (z' = x" + #"). The crack is open in
the interval (a;, b,), conditions of frictionless contact are satisfied in the arc (-, a;] and in the
BN &rond e Yernew of e ot Hp (&, A1) and e anisotropie and differant half prames 3 > &
and v < 0 ae bonded along the are fs;. = ). The positions of the polmte a; < 4, b; > Q are determined
during the course of the solution. For brevity, we will symmetrize the problem by means of the
conforma) mapping z = {b ¥ A1 - AZY" with correspondence of Yhe ponis Z = 2, 55,4, b, &2
= -1, 1, -a, a. The open, slip and full contact conditions are now respectively satisfied in the
intervais

(—a,a)=T, (-l,-alula. =L wLly=L, (—e.=1]U[l,0)=8§

&nd the forces are apf;iieé attge pois x = b,y = = - < b < 2. We will seek the sohuion in the
same 1255 0f Rmenons 25 1n {5.22) with the exception of the benaviour in the neigroournood of the
point z = -1 & z’ = o where we require

F(2y = O((z+ 11+ Oz + 1)} (5.1)

‘This equality impiies, in particuldr, that there is no pole ar inifnity 1n the function £'in the z”plane. The
real constants ¢ and b are determined during the course of the solution and the quantities @4, b, and
A are then established using the formulae

- 25 (a+b) b= 25/(a—b) A=I_b
(I~a)}b-1

: (I+a)l-b) 23,

The procedure for removing the root singularities at the points z = g enables one to determine
the two free constants 7 and (y in the solution. The integral, which determines the function F(z) in
(4.13), can be calculated using the theory of residues. We transform the integral (4.8) for y(z) so that
the oscillating function Zy(z) is completely annihilated in this case and, when account is taken of relations
(4.13) and (5.1), solution (4.12) can then be written in the form

F=1Al

+4 (Z+|)%explf\l’(2)l{ﬁ Yima o [(=bata)z+D) } 52)

z+ip)b-2 | ° b-a  YU+bXa' —b Xz-1)

_ o (Ea + Ty +iy)a = b)”?

Fy £ v Le=Ep+Bolo. W, =We(d)
21l + 1) expliv.)
w.+7 " arctg(y /1) a o
=Y d dt dt
M (z){{ Fou-o _J Y t-2)

Y(2)=(Z* - —a®). j=12, wo=m +%, wy=m]

The signs % in the second equality refer to the upper and lower haif-planes, and, to caiculate the functions
at the interface, it is useful to know that
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vEix) = Tw; +arctg(y/r) £ iyg(x) (L), \pi(x) =yp(x)tion (T)
vE(x) = Wy(x) (S)

wj+n"arctg('ylt) +T oY’ (x)
Yi@t)x—-1) o Y@ —x)

Yo(x) =Y/ (x)]
L

The expression for the functions ¥7(x) is presented in (4.14). The condition that there is no pole at
the point z = ¢ = -y gives two 1eal equations for determining the constants a and b in terms of the

quantity y

. J(I+b)(yz+b)(yz+l)_ﬁ(',qAOZ‘+xl"O 53
a=v, P oo et (53)
A-bXY -b) By E.—xdyl,

A = YCOSW. - bsiny,
ysiny, +beosy,

The solution of the equation in (5.3) is non-unique if the non-intersection condition is not taken into
consideration. The principle behind the choice of the proper solution is as follows: we dwell on the
solution which ensures the greatest permissible length of the slip zones around the the cut tip:
max (s, — by). It has been shown using a similar example [13] that the other solutions lead to a violation
of the physical condition [v] = 0 in the interval of opening (0, s).

In the unique auxiliary equation, which is analogous to (4.10), with the substitution a = ¥, integration
with respect to L, reduces to integration with respect to L; and, then, both integrals (over the intervals
L, and (—a, a)) are reduced, by means of a change of variable, to an integral of a function with a weak

singularity
®20 vy} ® . 2an
| 1—|arcig| = [+=n" |+ dp=0 5.9
o |a qg) 2 1-y*sin? ¢

g=+1-0~7y"sin’0

The result can also be represented in terms of complete elliptic integrals.

The value y and the difference n° = w, — w; = m% - m7 - 1; are uniquely defined from (5.4). One
of the integers, for example, w,, can be assigned arbitrarily and, then, w; = w, —#° It can be shown
that, when w is varied by an integer w, the integral determining the increment in the function y is taken
and it will be equal to mw, and this can only lead to a change in the sign of the canonical solution.

The angular distribution of the stress intensity factors can be calculated, starting out from the
asymptotic forms whenz — 1

= o _nh
F(z)=.t4'F°iM (z-1)
Ja=8)a? - b?)
When A = -1, o = 0 (in particular, the same materials), the slip zones are lost: a = 1, b; = 5y,

a; = —o. As the parameter o increases, the length of the opening zone decreases while, however,
remaining finite on attaining a velocity cy since, as ¢ — cg, we have

+ (1)

|Hi | =, xoxpz0, o {0, /{1, oo

This agrees with a qualitative analysis of the approximate solution of a similar problem for different
isotropic materials where only a single slip interval close to the tip was taken into account [13}.

In conclusion, we note that the solutions obtained, generally speaking, extend to a wider range of
subsonic velocities. For this, it is necessary that the ellipticity of the initial system of equations should
be preserved and it is necessary that an analysis is made of the existence and the relative distribution
of the zeros of the characteristic functions, that is, the velocities of the waves localized around the
interface and corresponding to the different contact conditions of the anisotropic half-planes. It follows
from physical considerations that an increase in the degree of of constraint on the interface boundary
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leads to an increase in the velocities of the boundary waves, and this means that these velocities lie
above the value cp.
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